
2024-04-15-Free Range Programming 
2024-04-15-Free Range Programming	 
1
Towards a Vulcan Mind Meld	 
2
What is Lisp?	 
2
Appendix - See Also	 4

1



Towards a Vulcan Mind Meld


Questions: 


We have two LLMs, one trained and one empty.


How do you transfer training from the first LLM to the empty one?


The information probably consists of zillions of numeric weights. A different 
weight for each node in the LLM.


Would you transfer the weights serially, in a single stream of information?


If you were to press 10 fingers against the head of the empty LLM, would you use 
10 serial streams instead of a single stream? Would the transfer process run 10 
times faster?


How close together would the source and target need to be to use the 10-finger 
trick? At what separation distance do you have to stop using 10 fingers and 
resort to a single stream of data?


What is Lisp?


In my mind:


Lisp is: programming using ASTs (CSTs, actually, but, I quibble) and has no actual 
"higher level syntax"


Lisp is an assembler with recursive syntax instead of a line-oriented syntax


	 - assembler is "untyped" and allows great power while allowing you to blow 
your own feet off


Lisp is, ostensibly, about "list processing", but, in fact it is about "stack 
processing" ; CAR means "top of stack" and CDR means "the rest of stack, with 
the Top removed"


Lisp has only 2 types - Atom and List, which makes Lisp very convenient for 
Design (vs. Production Engineering (aka optimization)), since you don't need to 
get tangled up dealing with niggly details.


2



Lisp can accommodate any paradigm and is not restricted to FP, or OO, or class-
based design, or whatever ; again, this makes Lisp very convenient for Design 
(corollary: a language that has a parenthesis-oriented syntax is not actually a Lisp 
if it strongly encourages programming in only a single paradigm, like FP or OO)


Lisp began life as a "dynamically typed" language, which means that it did type-
checking only at runtime (this is *not* the same as being "untyped"), it is possible 
to (further) differentiate Atoms by type and to perform gradual type embellishment 
and gradual type-checking


(If my reference to Lisp as being an untyped assembler vs. to Lisp being typed is 
confusing, note that I consider "type checking" to be just another error check 
akin to "syntax error checking", you can check for machine-types (like int/float/
double/etc.) and/or you can check for design-oriented type hierarchies or you can 
just use 2 simple types (like Atom and List) - Lisp allows you to turn the knob 
from "not much type checking" to "lots of type checking", depending on where 
you are in the Design cycle)  

3



Appendix - See Also

4

See Also 
References https://guitarvydas.github.io/2024/01/06/References.html 
Blog https://guitarvydas.github.io/ 
Blog https://publish.obsidian.md/programmingsimplicity 
Videos https://www.youtube.com/@programmingsimplicity2980 
[see playlist “programming simplicity”] 
Discord https://discord.gg/Jjx62ypR (Everyone welcome to join) 
X (Twitter) @paul_tarvydas 
More writing (WIP): https://leanpub.com/u/paul-tarvydas 

https://guitarvydas.github.io/2024/01/06/References.html
https://guitarvydas.github.io/
https://publish.obsidian.md/programmingsimplicity
https://www.youtube.com/@programmingsimplicity2980
https://discord.gg/Jjx62ypR
https://leanpub.com/u/paul-tarvydas

	2024-04-15-Free Range Programming
	Towards a Vulcan Mind Meld
	What is Lisp?
	Appendix - See Also

